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This paper presents an investigation into the dynamic stability of skew plates acted upon
simultaneously by an aerodynamic force in the chordwise direction and a random in-plane
force in the spanwise direction. Due to this random in-plane force, the plate may become
unstable before the aerodynamic force reaches its critical value. In this work, the "nite
element formulation is applied to obtain the discretized system equations. The system
equations are then partially uncoupled and reduced in size by the modal truncation method.
Finally, the unsmoothed and the smoothed versions of the stochastic averaging are used to
calculate the system response, and the second-moment stability criterion is utilized to
determine the stability boundary of the system. Numerical results show that the stability
boundary obtained by the smoothed stochastic averaging is less conservative than that
obtained by the unsmoothed version, and the former is the tangent of the latter at zero
spectral density of the random in-plane force.
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1. INTRODUCTION

The elastic stability of panels in air #ow has been extensively studied by aeroelasticians
[1}3]. In most of the references, panels are considered to be acted upon by the aerodynamic
force only and to deal primarily with the determination of the critical value of the
aerodynamic pressure or of the response amplitude of the limit circle.
In reality, panels may also be subjected to in-plane forces, which are induced by the

surrounding structures, in addition to the aerodynamic force. The in-plane forces
considered by researchers include static forces, periodic forces and random forces. Dugundji
[4] found the exact solution of a simply supported rectangular plate subjected to
aerodynamic and static in-plane forces. The critical aerodynamic pressure of a quadrilateral
plate acted upon simultaneously by in-plane loads was calculated by Sander et al. [5] by
using conforming and non-conforming "nite elements.
For panels subjected to periodic in-plane forces, Dzygadlo and Kaliski [6] and Dzygadlo

[7] determined the stability boundary of a simply supported rectangular plate for subsonic
and supersonic air #ow. Librescu and Thangjitham [8] examined the dynamic stability of
simply supported shear-deformable #at panels subjected to in-plane edge excitation.
Recently, the dynamic stability of skew plates acted upon by aerodynamic and periodic
in-plane forces was studied by Young and Chen [9, 10]. The aerodynamic force considered
0022-460X/02/080401#14 $35.00/0 � 2002 Academic Press



Figure 1. Con"guration and "nite element mesh of a cantilever skew plate subjected to both aerodynamic and
random in-plane forces.

402 T. H. YOUNG E¹ A¸.
in these two papers is either below or beyond the critical value, and the in-plane force is
assumed to act in the spanwise direction di!erent from the direction of the air #ow. They
found that the in-plane force may, in certain situations, bring about instability before the
aerodynamic force reaches its critical value and stabilize the system as the aerodynamic
force exceeds its critical value.
The e!ect of random in-plane loading was investigated by Ibrahim and his students

[11, 12] who determined the second-moment stability boundaries and response amplitudes
for an in"nitely long elastic plate by the moment equation approach. The in-plane loading is
assumed as the sum of a constant force and a Gaussian white noise and is acting in the
direction of the air #ow. Later, Potapov [13] examined the same problem for an in"nitely
long viscoelastic plate.
This paper studies the dynamic stability of cantilever skew plates subjected

simultaneously to an aerodynamic force in the chordwise direction and a random in-plane
force in the spanwise direction. The aerodynamic force is modelled by the piston theory, and
the random in-plane force is assumed as a physical noise with a zero mean. In this work, the
"nite element formulation is applied to obtain the discretized system equations. The system
equations are then partially uncoupled and reduced in size by the modal truncation
method. Finally, the unsmoothed and the smoothed versions of the stochastic averaging are
used to calculate the system response, and the second-moment stability criterion is utilized
to determine the stability boundary of the system.

2. EQUATION OF MOTION

A cantilever skew plate of side length a�b with a skew angle � subjected to both
aerodynamic and random in-plane forces is shown in Figure 1. Based on the
two-dimensional "rst order theory (also called the piston theory) [14], the equation of
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motion for a thin plate with small-deformation assumption is given by

�hwK !D� �w#��
�w
��

�

#�wR �#f (t)
��w

�x�
�

"0. (1)

In the above equation, w is the transverse displacement; �
�
is one of the skew co-ordinates,

as shown in Figure 1; �, h and D are the mass density, the thickness and the #exural rigidity
of the plate, respectively; � � is a biharmonic operator in Cartesian co-ordinates; the
overdot denotes a partial di!erentiation with respect to time t; the aerodynamic pressure
parameter � and damping parameter � are

�"2q/�M�
�

!1 and �"(�/< )[(M�
�

!2)/(M�
�

!1)],

where q is the dynamic pressure, M
�
is the Mach number, and < is the #ow velocity.

The equation of motion, equation (1), is a partial di!erential equation with
time-dependent coe$cients, and the problem possesses no exact solutions. Therefore, an
approximate method must be utilized to "nd an analytic solution. In this paper, the "nite
element method is used to separate the dependence on the spatial co-ordinates "rst. By use
of the three-node, nine-degree-of-freedom triangular element [15], the displacement within
an element can be written as

w"N�d
�
, (2)

where the shape function vectorN and the nodal parameter vector d
�
are given in the book

by Zienkiewicz [15]. Substituting equation (2) into equation (1), going through the "nite
element formulations yields the following equation for the discretized system [9]:
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where [M], [C], and [K
�
] are the mass, damping, and sti!ness matrices, respectively; [F

�
]

and [F
�
] are the force matrices due to the in-plane and the aerodynamic forces, respectively,

and d is the column matrix formed by all the d
�
. Note that the damping matrix [C] is equal

to the mass matrix [M] because both �h and � are constants.
Equation (3) is a set of simultaneous di!erential equations with variable coe$cients and

cannot be solved exactly. To improve the solvability of the system equations, a modal
analysis procedure is then applied to decouple the autonomous terms in the equations. In
the meantime, since #utter usually occurs among the lowest few modes, a modal truncation
is taken during the modal analysis procedure to reduce the size of the system equations.
Therefore, introduce a linear transformation

d"[>]v (4)

where [>] is a truncated right modal matrix formed by the "rst J normalized modes of the
corresponding undamped, autonomous system, i.e.,
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in which 	
�
"	
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��ha�/D with 	


�
being the natural frequency of the corresponding

undamped, autonomous system; y
�
and z

�
are the right and left eigenvectors of the



404 T. H. YOUNG E¹ A¸.
corresponding undamped, autonomous system, respectively, since the matrix [F
�
] is

asymmetric. Note that the random in-plane excitation f (t) is assumed to have a zero mean
here; otherwise, the constant part of the in-plane force has to be included in equation (5).
Substituting this transformation into equation (3) and premultiplying the transpose of the
corresponding truncated left modal matrix [Z]� formed by the "rst J normalized modes to
the equation yields the following reduced and partially uncoupled form if the aerodynamic
pressure parameter � is smaller than its critical value �

��
:
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D

vK#
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D

v� #[	�]v#
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D
[G]v"0, (6)

where the matrix [G]"[Z]�[F
�
][>], and [	�] is a diagonal matrix with each diagonal

entry being square of the non-dimensionalized natural frequency. Moreover, the temporal
variable is changed such that the di!erential equation is in terms of the dimensionless

variable �"�(D/�ha�)t. This change transforms equation (6) into the form
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where v
�
and g

��
are entries of the matrices v and [G], respectively, && � '' denotes

a di!erentiation with respect to �, 
"�a�/2��hD, and fJ"fa�/D.

3. THE UNSMOOTHED STOCHASTIC AVERAGING

When the aerodynamic pressure parameter � increases and approaches its critical value
�
��
, two natural frequencies of the system, say 	

�
and 	

	
, get close, and the system behavior

is dominated by these two modes. Therefore, the system can be approximated by
a two-degree-of-freedom system by considering only these two modes, i.e., equation (7) can
be rewritten as
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If the relaxation time of the system is much larger than the correlation time of the random
in-plane excitation fJ (�), the system response can be approximated as a Markov process
governed by the following Ito di!erential equations [16]:

dy
�
"m
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d�#�

��
dB

�
, i, j"1,2, 4, (10)

where B
�
are mutually independentWiener processes with a unit variance,m

�
and �

��
are the

drift and the di!usion coe$cients, respectively. If the autocorrelation function of the
random in-plane excitation R
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neigborhood around the origin �"0, m
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and �
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where ([�][�]�)
��
denotes the i} jth entry of the product of the di!usion matrix and its

transpose, and G
��
�* ( ) )"G

��
( ) , �#�* ). This is referred to as the unsmoothed version of

the stochastic averaging [16]. Assume further that fJ (�) is a delta-correlated noise, i.e.,

R
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where S is the spectral density of fJ (�), and � ( ) ) denotes a Dirac delta function. Then the
expressions for m
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can be easily calculated as
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The above results can also be obtained by the Wong}Zakai convergence theorem [17].
By Ito's di!erential rule, the stochastic di!erential equation for y

�
y
�
may be obtained

as
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where a repeated index indicates a summation over its range. Taking the ensemble average
yields the following second-order moment equations:
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where [H] is a constant square matrix. The su$cient and necessary condition for the system
to be stable in the second-moment sense is the real part of all eigenvalues of [H] being
negative, from which the second-moment stability boundary of the system can be
calculated.

4. THE SMOOTHED STOCHASTIC AVERAGING

The solution of equation (8) can also be assumed to be of the form
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If the right-hand side of equation (17) is small in some sense, the smoothed version of
stochastic averaging can be applied to obtain the Ito di!erential equation governing the
solution of the equation. Based on the Khas'minskii limit theorem [18], the solution of
equation (17) converges weakly to a Markov process which is governed by the following Ito
di!erential equations:
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where B
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denote mutually independent Wiener processes with a unit variance, and
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where the symbol �[ ) ]� represents the time-averaging operation, i.e.,
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By using equation (18), the Ito di!erential equations for u�
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and u�
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can be acquired. Then

taking the expectation on both sides of the equations yields
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The stability of equation (21) can be assured if all the real parts of eigenvalues of the
coe$cient matrix are negative, which can be satis"ed by the following conditions:
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These three conditions can all be satis"ed if
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It is observed from the above equation that the critical value of 
 is proportional to S by the
second-moment stability criterion, which means that the second-moment stability
boundary of the system is a straight line on the S}
 plane.

5. NUMERICAL RESULTS AND DISCUSSIONS

Before formally presenting the numerical results for stability studies, #utter analysis of the
system de"ned by equation (5) must be conducted "rst. According to the previous study [9],
the "nite element mesh is shown in Figure 1 with 126 degrees of freedom, and the number of
modes used in the mode truncation method is taken as 30 in this work. Moreover, for
a cantilever skew plate with aspect ratio a/b"1, it is found that #utter occurs between the
"rst and second modes for skew angles up to 303.
Before the aerodynamic pressure parameter reaches its critical value, the plate is still

stable if subjected to the aerodynamic force alone. In this situation, if the plate is subjected
to a random in-plane excitation in addition to the aerodynamic force, it may become
unstable according to the previous analysis. Figure 2 presents the second-moment stability
boundaries of a cantilever square plate acted upon by an aerodynamic force in the
chordwise direction and a random in-plane force in the spanwise direction in the S}
 plane.



Figure 2. Stability boundaries of a cantilever square plate acted upon by both aerodynamic and random
in-plane forces in the S}
 plane. �"0)3, �/�

��
"0)95:**** , smoothed version; } } } } } , unsmoothed version.
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The boundary obtained by the smoothed stochastic averaging is a straight line, as predicted
in the above section, while the boundary obtained by the unsmoothed stochastic averaging
is a curve. It is observed that the straight line is the tangent of the curve at the origin.
Therefore, for a small spectral density of the random excitation, the solution obtained from
the smoothed stochastic averaging is the best approximation to that of the unsmoothed
stochastic averaging. The stable region (SR) lies beneath the stability boundary, and hence
the stability boundary calculated from the unsmoothed stochastic averaging is more
conservative than that from the smoothed stochastic averaging.

Figure 3 shows the e!ect of aerodynamic pressure on the second-moment stability
boundary of the cantilever square plate as considered in Figure 2. Figure 3(a) shows the
stability boundaries obtained by the unsmoothed stochastic averaging, and Figure 3(b)
shows the stability boundaries obtained by the smoothed stochastic averaging. All the
stability boundaries start from the origin because in the absence of the random in-plane
excitation, the plate is still stable if the aerodynamic pressure does not exceed the critical
value. The "gure also reveals that an increase in the aerodynamic pressure will lower the
stability boundary, leaving a smaller stability region. This is attributed to the fact that
a larger aerodynamic pressure pushes the system closer to the unstable con"guration.
Consequently, it needs a smaller random in-plane excitation to force the system to be
unstable.
The e!ect of damping on the second-moment stability boundary of the cantilever square

plate as considered in the previous "gure is depicted in Figure 4. All the stability boundaries
in Figures 4(a) and 4(b) end at the lower right corner of the "gure, at which �/�

��
"1)0,

because in the absence of the random in-plane excitation, the plate becomes unstable as the
aerodynamic pressure reaches its critical value. The "gure also shows that a larger damping
factor 
 corresponds to a higher stability boundary and results in a larger stability region.
Actually, a larger damping consumes more energy from the system, which needs a stronger



Figure 3. The e!ect of aerodynamic pressure on the second-moment stability boundaries of a cantilever square
plate, �"0)3: (a) the unsmoothed averaging; (b) the smoothed averaging: ****, �/�

��
"0)90; } } } } } ,

�/�
��
"0)95; ) } ) }) } ) , �/�

��
"0)97.

Figure 4. The e!ect of damping on the second-moment stability boundaries of a cantilever square plate, �"0)3:
(a) the unsmoothed averaging; (b) the smoothed averaging: ****, 
"0)02; } } } } } , 
"0)05; ) } ) } ) } ) ,

"0)1.
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random in-plane excitation to destabilize the system. Therefore, the e!ect of damping is
favourable in this case.
The e!ect of the spectral density of the random in-plane excitation on the

second-moment stability boundary of the same square plate is illustrated in Figure 5. Note
that the stability boundaries, obtained by the smoothed stochastic averaging, in Figure 5(b)
are not straight lines any more. All the stability boundaries in both "gures rise quickly and
approach the horizontal line �/�

��
"1)0 as the damping factor 
 increases. This shows that

as the aerodynamic pressure is well below its critical value, stability of the plate is mainly
decided by the damping and random in-plane excitation. However, if the aerodynamic
pressure is very close to its critical value, stability of the plate is predominantly a!ected by



Figure 5. The e!ect of the spectral density of the random in-plane excitation on the second-moment stability
boundaries of a cantilever square plate, �"0)3: (a) the unsmoothed averaging; (b) the smoothed averaging:
****, S"0)02; } } } } } , S"0)05; ) } ) } ) } ) , S"0)1.

Figure 6. Stability boundaries of a cantilever skew plate acted upon by both aerodynamic and random in-plane
forces in the S}
 plane, a/b"1)0, �"0)3, �"303 and �/�

��
"0)95: **** , smoothed version; } } } } } ,

unsmoothed version.
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the random in-plane excitation and the aerodynamic pressure itself. Above the line, the
system is unstable even if the random in-plane excitation is absent. It is found from the
"gure that a larger spectral density corresponds to a lower stability boundary, leaving
a smaller stability region. Therefore, the e!ect of the spectral density of the random in-plane
excitation is destabilizing in this situation.
Figure 6 presents the second-moment stability boundaries of a cantilever skew plate

subjected to both aerodynamic and random in-plane forces in the S}
 plane. Although this



Figure 7. The e!ect of the skew angle on the second-moment stability boundaries of a cantilever skew plate,
a/b"1)0, �"0)3 and �/�

��
"0)95: (a) the unsmoothed averaging; (b) the smoothed averaging:****, �"03;

} } } } } , �"153; ) } ) } ) } ) , �"303.
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is a skew plate, not a square plate as studied in Figure 2, the stability boundary obtained by
the smoothed stochastic averaging is a straight line and is again tangential to that obtained
by the unsmoothed stochastic averaging at the origin. Also, the stability boundary
calculated from the unsmoothed stochastic averaging is more conservative than that from
the smoothed stochastic averaging.
Figure 7 shows the e!ect of the skew angle on the second-moment stability boundary of

the cantilever skew plate considered in Figure 6. Again the stability boundaries in
Figure 7(a) are obtained by the unsmoothed stochastic averaging, and those in Figure 7(b)
are obtained by the smoothed stochastic averaging. All the stability boundaries in both
Figures 7(a) and 7(b) start from the origin because of the same reason as previously
mentioned in Figure 3. In Figure 7(b) a larger skew angle corresponds to a steeper stability
boundary, leaving a larger stability region. Therefore, the e!ect of the skew angle is
stabilizing if predicted by the smoothed stochastic averaging. However, it is not always true
in Figure 7(a) in which the stability boundary is a little bit higher for a larger skew angle at
smaller values of 
 but is visibly lower for a larger skew angle at larger values of 
. Therefore,
the e!ect of the skew angle is favorable but not very signi"cant at smaller values of 
, and is
unfavorable at larger values of 
. The reason for this is: in Figure 7(a), as the skew angle
increases from 0 to 303, the stability boundaries bend more, that is, the curvatures of the
boundaries at the origin get larger. Hence, the tangents of the boundaries at the origin
become steeper for a smaller skew angle, and this is the result shown in Figure 7(b).

6. CONCLUSIONS

The dynamic stability of a cantilever skew plate subjected simultaneously to a sub-critical
aerodynamic pressure in the chordwise direction and a random in-plane excitation in the
spanwise direction was studied in this paper. The unsmoothed and the smoothed versions of
the stochastic averaging are used to calculate the system response. Parametric instability in
the second-moment sense was shown to arise due to the random in-plane force before the
aerodynamic pressure parameter reaches its critical value.
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Numerical results show that the stability boundary obtained by the smoothed stochastic
averaging is less conservative than that by the unsmoothed version, and the former is the
tangent of the latter at zero spectral density of the random in-plane force. The e!ects of
system parameters on changes of the second-moment stability boundaries of the system
were studied. It is found that the e!ect of damping is stabilizing, while the e!ects of the
aerodynamic pressure and the spectral density of the random in-plane excitation are
unfavorable to the second-moment stability of the system. For skew plates, the e!ect of the
skew angle is quite complicated. It depends not only on the aerodynamic pressure and the
damping factor of the plate but also on the method applied to obtain the system response.
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